Topology assisted self-organization of colloidal nanoparticles: application to 2D large-scale nanomastering

نویسندگان

  • Hind Kadiri
  • Serguei Kostcheev
  • Daniel Turover
  • Rafael Salas-Montiel
  • Komla Nomenyo
  • Anisha Gokarna
  • Gilles Lerondel
چکیده

Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ) posts, on the self-organization of polystyrene beads (PS) dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directed organization of gold nanoparticles in polymer coatings through infrared-assisted evaporative lithography.

Infrared-assisted evaporative lithography (IRAEL) is presented as an emerging technology to direct the assembly of gold nanospheres (AuNSs) into large-scale superstructures within colloidal polymeric coatings. The organization of gold nanoparticle arrays within the superstructures can be tuned over length scales, ranging from micrometers up to several millimetres, giving rise to intrinsic plasm...

متن کامل

Synthesis and Characterization of Colloidal Nanosilica via an Ultrasound Assisted Route Based on Alkali Leaching of Silica Fume

Colloidal nanosilica is currently being produced by various methods which are mainly high energy intensive and/or not environmentally friendly. It is therefore essential to develop new energy-efficient and environmentally friendly technologies. This paper introduces a new ultrasound assisted route based on alkali leaching of silica fume for synthesis of colloidal silica nanoparticles. The ef...

متن کامل

An Approach to Lithographically Defined Self-Assembled Nanoparticle Films

Both 2D and 3D colloidal particle “crystals” and patterned nanoparticle arrays deposited from colloidal suspensions are the subject of intense study owing to their potential applications in electronics, photonics, biological and chemical sensors, and catalysis. Colloidal particle crystals and patterned colloidal particles are most often formed using processes such as gravity sedimentation, spin...

متن کامل

Triggered self-assembly of magnetic nanoparticles.

Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufacturing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same ...

متن کامل

An electrodynamics-Langevin dynamics (ED-LD) approach to simulate metal nanoparticle interactions and motion.

Understanding the formation of electrodynamically interacting assemblies of metal nanoparticles requires accurate computational methods for determining the forces and propagating trajectories. However, since computation of electromagnetic forces occurs on attosecond to femtosecond timescales, simulating the motion of colloidal nanoparticles on milliseconds to seconds timescales is a challenging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014